Skin Cancer Forum
Skin Cancer Forum
Home | Profile | Register | Active Topics | Active Polls | Members | Search | FAQ
Save Password
Forgot your Password?

 All Forums
 Skin Cancer Forums at
 Skin cancer prevention strategies
 Can we eat to starve cancer?
 New Topic  Reply to Topic
 Printer Friendly
Author Previous Topic Topic Next Topic  


668 Posts

Posted - 11/02/2012 :  17:42:15  Show Profile  Reply with Quote
Fantastic video on TED about progress in cancer treatments

William Li presents a new way to think about treating cancer and other diseases: anti-angiogenic therapy, preventing the growth of blood vessels that feed a tumor. The crucial first (and best) step: Eating cancer-fighting foods that cut off the supply lines and beat cancer at its own game...

Here's the link to the video

and here's the transcript..
Good afternoon. There's a medical revolution happening all around us, and it's one that's going to help us conquer some of society's most dreaded conditions, including cancer. The revolution is called angiogenesis, and it's based on the process that our bodies use to grow blood vessels.

So why should we care about blood vessels? Well, the human body is literally packed with them: 60,000 miles worth in a typical adult. End to end, that would form a line that would circle the earth twice. The smallest blood vessels are called capillaries; we've got 19 billion of them in our bodies. And these are the vessels of life, and, as I'll show you, they can also be the vessels of death. Now the remarkable thing about blood vessels is that they have this ability to adapt to whatever environment they're growing in. For example, in the liver they form channels to detoxify the blood; in the lung they line air sacs for gas exchange; in muscle they corkscrew so that muscles can contract without cutting off circulation; and in nerves they course along like power lines, keeping those nerves alive. We get most of these blood vessels when we're actually still in the womb, And what that means is that as adults, blood vessels don't normally grow. Except in a few special circumstances: In women, blood vessels grow every month to build the lining of the uterus; during pregnancy, they form the placenta, which connects mom and baby. And after injury, blood vessels actually have to grow under the scab in order to heal a wound. And this is actually what it looks like, hundreds of blood vessels all growing toward the center of the wound.

So the body has the ability to regulate the amount of blood vessels that are present at any given time. It does this through an elaborate and elegant system of checks and balances, stimulators and inhibitors of angiogenesis, such that, when we need a brief burst of blood vessels, the body can do this by releasing stimulators, proteins called angiogenic factors that act as natural fertilizer and stimulate new blood vessels to sprout. And when those excess vessels are no longer needed, the body prunes them back to baseline using naturally occurring inhibitors of angiogenesis. Now there are other situations where we start beneath the baseline and we need to grow more blood vessels just to get back to normal levels -- for example, after an injury -- and a body can do that too, but only to that normal level, that set point.

But what we now know is that for a number of diseases, there are defects in the system where the body can't prune back extra blood vessels or can't grow enough new ones in the right place at the right time. And in these situations, angiogenesis is out of balance. And when angiogenesis is out of balance, a myriad of diseases result. For example, insufficient angiogenesis -- not enough blood vessels -- leads to wounds that don't heal, heart attacks, legs without circulation, death from stroke, nerve damage. And on the other end, excessive angiogenesis -- too many blood vessels -- drives disease, and we see this in cancer, blindness, arthritis, obesity, Alzheimer's disease. In total, there are more than 70 major diseases affecting more than a billion people worldwide, that all look on the surface to be different from one another, but all actually share abnormal angiogenesis as their common denominator. And this realization is allowing us to reconceptualize the way that we actually approach these diseases by controlling angiogenesis.

Now I'm going to focus on cancer because angiogenesis is a hallmark of cancer, every type of cancer. So here we go. This is a tumor: dark, gray, ominous mass growing inside a brain. And under the microscope, you can see hundreds of these brown staining blood vessels, capillaries that are feeding cancer cells, bringing oxygen and nutrients. But cancers don't start out like this. And, in fact, cancers don't start out with a blood supply. They start out as small, microscopic nests of cells that can only grow to one half a cubic millimeter in size; that's the tip of a ballpoint pen. Then they can't get any larger because they don't have a blood supply, so they don't have enough oxygen or nutrients.

In fact, we're probably forming these microscopic cancers all the time in our body. Autopsy studies from people who died in car accidents have shown that about 40 percent of women between the ages of 40 and 50 actually have microscopic cancers in their breasts, about 50 percent of men in their 50s and 60s have microscopic prostate cancers, and virtually 100 percent of us, by the time we reach our 70s, will have microscopic cancers growing in our thyroid. Yet, without a blood supply, most of these cancers will never become dangerous. Dr. Judah Folkman, who was my mentor and who was the pioneer of the angiogenesis field, once called this "cancer without disease."

So the body's ability to balance angiogenesis, when it's working properly, prevents blood vessels from feeding cancers. And this turns out to be one of our most important defense mechanisms against cancer. In fact, if you actually block angiogenesis and prevent blood vessels from ever reaching cancer cells, tumors simply can't grow up. But once angiogenesis occurs, cancers can grow exponentially. And this is actually how a cancer goes from being harmless to deadly. Cancer cells mutate and they gain the ability to release lots of those angiogenic factors, natural fertilizer, that tip the balance in favor of blood vessels invading the cancer. And once those vessels invade the cancer, it can expand, it can invade local tissues. And the same vessels that are feeding tumors allow cancer cells to exit into the circulation as metastases. And, unfortunately, this late stage of cancer is the one at which it's most likely to be diagnosed, when angiogenesis is already turned on and cancer cells are growing like wild.

So, if angiogenesis is a tipping point between a harmless cancer and a harmful one, then one major part of the angiogenesis revolution is a new approach to treating cancer by cutting off the blood supply. We call this antiangiogenic therapy, and it's completely different from chemotherapy because it selectively aims at the blood vessels that are feeding the cancers. And we can do this because tumor blood vessels are unlike normal, healthy vessels we see in other places of the body: They're abnormal; they're very poorly constructed; and, because of that, they're highly vulnerable to treatments that target them. In effect, when we give cancer patients antiangiogenic therapy -- here, an experimental drug for a glioma, which is a type of brain tumor -- you can see that there are dramatic changes that occur when the tumor is being starved. Here's a woman with a breast cancer being treated with the antiangiogenic drug called Avastin, which is FDA approved. And you can see that the halo of blood flow disappears after treatment.

Well, I've just shown you two very different types of cancer that both responded to antiangiogenic therapy. So, a few years ago, I asked myself, "Can we take this one step further and treat other cancers, even in other species?" So here is a nine year-old boxer named Milo who had a very aggressive tumor called a malignant neurofibroma growing on his shoulder. It invaded into his lungs. His veterinarian only gave him three months to live. So we created a cocktail of antiangiogenic drugs that could be mixed into his dog food as well as an antiangiogenic cream that could be applied on the surface of the tumor. And within a few weeks of treatment, we were able to slow down that cancer's growth such that we were ultimately able to extend milo's survival to six times what the veterinarian had initially predicted, all with a very good quality of life.

And we subsequently treated more than 600 dogs. We have about a 60 percent response rate and improved survival for these pets that were about to be euthanized. So let me show you a couple of even more interesting examples. This is 20-year-old dolphin living in Florida, and she had these lesions in her mouth that, over the course of three years, developed into invasive squamous cell cancers. So we created an antiangiogenic paste. We had it painted on top of the cancer three times a week. And over the course of seven months, the cancers completely disappeared, and the biopsies came back as normal.

Here's a cancer growing on the lip of a Wuarter horse named Guinness. It's a very, very deadly type of cancer called an angiosarcoma. It had already spread to his lymph nodes, so we used an antiangiogenic skin cream for the lip and an oral cocktail, so we could treat from the inside as well as the outside. And over the course of six months, he experienced a complete remission. And here he is six years later, Guinness, with his very happy owner.


Now, obviously, antiangiogenic therapy could be used for a wide range of cancers. And, in fact, the first pioneering treatments for people, as well as dogs, are already becoming available. There's 12 different drugs, 11 different cancer types. But the real question is: How well do these work in practice? So here's actually the patient survival data from eight different types of cancer. The bars represent survival time taken from the era in which there was only chemotherapy, or surgery, or radiation available. But starting in 2004, when antiangiogenic therapies first became available, well you can see that there has been a 70 to 100 percent improvement in survival for people with kidney cancer, multiple myeloma, colorectal cancer, and gastrointestinal stromal tumors. That's impressive. But for other tumors and cancer types, the improvements have only been modest.

So I started asking myself, "Why haven't we been able to do better?" And the answer, to me, is obvious; we're treating cancer too late in the game, when it's already established and, oftentimes, it's already spread or metastasized. And as a doctor, I know that once a disease progresses to an advanced stage, achieving a cure can be difficult, if not impossible. So I went back to the biology of angiogenesis and started thinking: Could the answer to cancer be preventing angiogenesis, beating cancer at its own game so the cancers could never become dangerous? This could help healthy people as well as people who've already beaten cancer once or twice and want to find a way to keep it from coming back. So to look for a way to prevent angiogenesis in cancer, I went back to look at cancer's causes. And what really intrigued me was when I saw that diet accounts for 30 to 35 percent of environmentally caused cancers.

Now, the obvious thing is to think about what we could remove from our diet, what to strip out, take away. But I actually took a completely opposite approach and began asking: What could we be adding to our diet that's naturally antiangiogenic, that could boost the body's defense system and beat back those blood vessels that are feeding cancers? In other words, can we eat to starve cancer? (Laughter) Well, the answer's yes, and I'm going to show you how. Our search for this has taken us to the market, the farm and to the spice cabinet, because what we've discovered is that mother nature has laced a large number of foods and beverages and herbs with naturally occurring inhibitors of angiogenesis.

So here's a test system we developed. At the center is a ring from which hundreds of blood vessels are growing out in a starburst fashion. And we can use this system to test dietary factors at concentrations that are obtainable by eating. So let me show you what happens when we put in an extract from red grapes. The active ingredient's resveratrol, it's also found in red wine. This inhibits abnormal angiogenesis by 60 percent. Here's what happens when we added an extract from strawberries; it potently inhibits angiogenesis. And extract from soybeans. And here is a growing list of our antiangiogenic foods and beverages that we're interested in studying. For each food type, we believe that there are different potencies within different strains and varietals. And we want to measure this because, well, while you're eating a strawberry or drinking tea, why not select the one that's most potent for preventing cancer.

So here are four different teas that we've tested. They're all common ones: Chinese jasmine, Japanese sencha, Earl Grey and a special blend that we prepared. And you can see clearly that the teas vary in their potency from less potent to more potent. But what's very cool is when we actually combined the two less potent teas together, the combination, the blend, is more potent than either one alone. This means there's food synergy.

Here's some more data from our testing. Now, in the lab, we can simulate tumor angiogenesis represented here in a black bar. And using this system, we can test the potency of cancer drugs. So the shorter the bar, less angiogenesis, that's good. And here are some common drugs that have been associated with reducing the risk of cancer in people. Statins, nonsteroidal anti-inflammatory drugs and a few others, they inhibit angiogenesis too. And here are the dietary factors going head to head against these drugs. You can see, they clearly hold their own and, in some cases, they're more potent than the actual drugs. Soy, parsley, garlic, grapes, berries; I could go home and cook a tasty meal using these ingredients. So imagine if we could create the world's first rating system in which we could score foods according to their antiangiogenic, cancer-preventative properties. And that's what we're doing right now.

Now, I've shown you a bunch of lab data, and so the real question is: What is the evidence in people that eating certain foods can reduce angiogenesis in cancer? Well, the best example I know is a study of 79,000 men followed over 20 years, in which it was found that men who consumed cooked tomatoes two to three times a week had up to a 50 percent reduction in their risk of developing prostate cancer. Now, we know that tomatoes are a good source of lycopene, and lycopene is antiangiogenic. But what's even more interesting from this study is that in those men who did develop prostate cancer, those who ate more servings of tomato sauce actually had fewer blood vessels feeding their cancer. So this human study is a prime example of how antiangiogenic substances present in food and consumed at practical levels can impact on cancer. And we're now studying the role of a healthy diet with Dean Ornish at UCSF and Tufts University on the role of this healthy diet on markers of angiogenesis that we can find in the bloodstream.

Now, obviously, what I've shared with you has some far-ranging implications, even beyond cancer research. Because if we're right, it could impact on consumer education, food services, public health and even the insurance industry. And, in fact, some insurance companies are already beginning to think along these lines. Check out this ad from Blue Cross Blue Shield of Minnesota. And for many people around the world, dietary cancer prevention may be the only practical solution because not everybody can afford expensive end-stage cancer treatments, but everybody could benefit from a healthy diet based on local, sustainable, antiangiogenic crops.

Now, finally, I've talked to you about food, and I've talked to you about cancer, so there's just one more disease that I have to tell you about and that's obesity. Because it turns out that adipose tissue, fat, is highly angiogenesis dependent. And, like a tumor, fat grows when blood vessels grow. So the question is: Can we shrink fat by cutting off its blood supply? So the top curve shows the body weight of a genetically obese mouse that eats nonstop until it turns fat, like this furry tennis ball. And the bottom curve is the weight of a normal mouse.

If you take the obese mouse and give it an angiogenesis inhibitor, it loses weight. Stop the treatment, gains the weight back. Restart the treatment, loses the weight again. Stop the treatment, it gains the weight back. And, in fact, you can cycle the weight up and down simply by inhibiting angiogenesis. So this approach that we're taking for cancer prevention may also have an application for obesity. The really, truly interesting thing about this is that we can't take these obese mice and make them lose more weight than what the normal mouse's weight is supposed to be. In other words, we can't create supermodel mice. (Laughter) And this speaks to the role of angiogenesis in regulating healthy set points.

Albert Szent-Gyorgi once said that, "Discovery consists of seeing what everyone has seen, and thinking what no one has thought." I hope I've convinced you that, for diseases like cancer, obesity and other conditions, that there may be a great power in attacking their common denominator: angiogenesis. And that's what I think the world needs now. Thank you.


June Cohen: I have a quick question for you. So these drugs aren't exactly ... they're not exactly in mainstream cancer treatments right now. For anyone out here who has cancer, what would you recommend? Do you recommend pursuing these treatments now, for most cancer patients?

William Li: So there are antiangiogenic treatments that are FDA approved, and if you're a cancer patient or working for one or advocating for one, you should ask about them. And there are many clinical trials. The Angiogenesis Foundation is following almost 300 companies, and there are about 100 more drugs in that pipeline. So consider the approved ones, look for clinical trials, but then between what the doctor can do for you, we need to start asking what can we do for ourselves. And this is one of the themes that I'm talking about is we can empower ourselves to do the things that doctors can't do for us, which is to use knowledge and take action. And if Mother Nature has given us some clues, we think that there might be a new future in the value of how we eat. And what we eat is really our chemotherapy three times a day.

JC: Right. And along those lines, for people who might have risk factors for cancer, would you recommend pursuing any treatments sort of prophylactically or simply pursuing the right diet with lots of tomato sauce?

WL: Well, you know, there's abundant epidemiological evidence. And I think in the information age, it doesn't take long to go to a credible source like PubMed, the National Library of Medicine, to look for epidemiological studies for cancer risk reduction based on diet and based on common medications. And that's certainly something that anybody can look into.


668 Posts

Posted - 11/03/2012 :  17:58:29  Show Profile  Reply with Quote
More information of Antiangiogenic Therapy for Skin Cancer..copied from Here..

Antiangiogenic Therapy for Skin Cancer
Drugs that inhibit tumor angiogenesis have dramatically altered the treatment landscape for some of the most common and lethal cancer types, including cancers of the colon, lungs, and kidneys. Instead of killing cancer cells directly, antiangiogenic agents disrupt the blood supply to the tumor, depriving it of oxygen and nutrients. This approach represents a revolutionary shift in treatment built upon decades of research. Administering antiangiogenic drugs with standard therapies can also make those treatments more effective.

For the treatment of skin cancer, a number of antiangiogenic therapies are either already being used in the clinic or are under study in clinical trials. These therapies target specific growth factors or their receptors on cells that are known to stimulate angiogenesis during skin cancer development. By attacking these growth factors, angiogenesis inhibitors can slow or stop tumor growth, often without the unpleasant side effects from conventional skin cancer treatments, such as surgery and radiation.

In the following sections, we look at some of the antiangiogenic therapies being used for skin cancer treatment, and a number of promising therapies in development.

COX-2 inhibitors
The enzyme cyclooxygenase-2 (COX-2) plays an important role in skin cancer angiogenesis by increasing production of VEGF and other angiogenesis-stimulating proteins following UV exposure. COX-2 inhibitors, in addition to being potent suppressors of pain and inflammation, also suppress angiogenesis. The oral COX-2 inhibitor celecoxib (20 mg/kg per day) has been shown to suppress SCC and melanoma tumors in mice. A topical COX-2 inhibitor, diclofenac 3% gel (Solaraze), is approved for the treatment of AK lesions, which are now generally recognized as an early form of SCC.2

Diclofenac 3.0% gel (twice daily for 3 months) was compared to placebo in a randomized, double blind, placebo controlled study involving 96 patients with at least 5 AK lesions each.3 At follow up, 79% of patients treated with diclofenac had complete or significant lesion improvement, and 50% had complete clearance of their AKs. Among patients who got placebo, only 45% showed improvement. In another study, diclofenac 3.0% gel was as effective as topical chemotherapy (5-FU) for the treatment of AKs of the face and scalp, but with much less inflammation.4

Toll-like receptors
Another therapy target in skin cancer are the Toll-like receptors (TLRs). Stimulating the production of TLRs inhibits tumor growth by enhancing the immune response and inhibiting angiogenesis. Since TLRs are ubiquitous in different types of skin cells, therapies that stimulate TLRs are particularly promising as skin cancer treatments.

Imiquimod (imidazoquinoline 5% cream; Aldara), a Toll-like receptor-7 (TLR-7) agonist (stimulator), has been approved since 1997 treat genital warts, and since 2004 to treat AK and BCC. Imiquimod stimulates the production of interferons (IFN) and interleukins (IL)—powerful chemicals called cytokines that stimulate the immune response. Many cytokines also inhibit angiogenesis by decreasing the production of angiogenic growth factors.

Typically, topical agents like imiquimod are applied with increasing frequency until a severe skin reaction occurs, which has traditionally been viewed as a sign the medication is working. While effective, many patients experience painful skin irritation accompanied by unsightly redness, crusting and peeling.

More recent clinical experience suggests, however, that using lower doses of imiquimod to induce an antiangiogenic response is just as effective and better tolerated. Using a flexible, patient-specific, dose-response protocol designed by clinicians—the Individualized Maximal Tolerated Dose (iMTDSM)—patients apply imiquimod to their lesions at slowly increasing doses until the first signs of redness and irritation appear.5

Because each patient responds differently, iMTD allows for the most effective dosing frequency while avoiding undesirable skin inflammation. In data recently presented involving 56 non-melanoma skin lesions (AK, BCC, SCC in situ), iMTD with imiquimod completely resolved all of the treated lesions without any gross inflammation.6 Maximum dose frequency ranged from as infrequently as 3 times per week to as much as twice daily, which shows that a single dosing schedule is not appropriate for all patients.

Growth Factor Inhibitors
Inhibitors of VEGF and other angiogenesis-promoting growth factors have produced remarkable results in treating certain solid tumors. One such agent, bevacizumab (Avastin), a monoclonal antibody for VEGF, is now approved to treat advanced cancers of the breast, colon, lung, brain, and kidneys. A challenge for developing topical VEGF inhibitors is formulating agents of sufficiently low molecular weight to penetrate the upper layers of the skin.

One agent, dobesilate, an inhibitor of bFGF and acidic fibroblast growth factor (aFGF), has shown promising results for the treatment of rosacea, one of many skin conditions that have excessive angiogenesis as a contributing factor.7 In one study, calcium dobesilate (2.5% suspension, twice daily for four weeks) produced complete resolution of a BCC, with no evidence of tumor recurrence at five months.8 No irritation or adverse effects were observed during treatment.

Green Tea Catechins
Natural plant extracts, such as polyphenolic antioxidants found in green tea and grape seed, have been shown to inhibit angiogenesis through a number of mechanisms. Epigallocatechin-3-gallate (EGCG), the major catechin (flavonol) in green tea, has been shown to inhibit angiogenesis both in animal and human studies.9 Green tea or purified EGCG administered to mice has been shown to prevent angiogiogenesis of the corneas and inhibit the growth of highly angiogenic tumors. Topical EGCG reduced angiogenesis in UV-induced skin cancer in laboratory mice.10
EGCG is the active component of sinecatechins ointment 15% (Veregen), which was approved by the FDA in 2007 to treat genital warts. A related compound, kunecatechins ointment (Polyphenon E topical ointment) is being tested for AK in clinical studies.
Go to Top of Page

Lani Jacobson

3 Posts

Posted - 11/15/2012 :  11:16:53  Show Profile  Reply with Quote
Dear Tom (?) ... hope I recalled your name from a prior post ... please forgive me if i got it wrong!

I found this forum because I have various cancer concerns given that I'm BRCA2 positive, which is the "breast cancer" gene but which actually increases the risk of many other cancers as well as 87% lifetime risk of breast and 30-60% risk of ovarian cancer. Currently, I'm dealing with a possible skin cancer at my upper lip line which I'm not showing to my doctor because he's already frozen pre-cancer spots from the other side of my upper lip and left a scar. I'm actually too scared of the treatment to go back to him for this new one. Had a basil cell surgically removed 24 years ago below my eye (MOS) and still have a scar left from that.

I've already purchased Fleurocil (same as Efudex ?) via my dermatologist at Kaiser ... and Curaderm on via the internet ... but reading about others' experiences I've been too frightened to treat such a delicate area of my face (lip line) with either of these. Have been using Rose Hip oil (Vitamin C) mixed with DMSO and some Raspberry oil for the past week-plus, with no obvious results. Have purchased cold-extracted high CBD concentration Cannabis oil (non-psychoactive since no heat has been used in processing) and was planning to use this as my next experiment, perhaps mixed with the DMSO creme. (There's information on the internet about this being effective for skin cancer, but obviously only anecdotal.

Your postings here have given me more hope. I do not want surgery on my lip ... or scarring ... (obviously). I am frightened.

I noticed that you made no mention of Cannabis oil in your recent posting of a short list of what seems to work.

You are someone I would LOVE to have a conversation with. I know that you must be busy because the information you've gathered must be so valuable to so many people ... and you've already been so generous with your time and knowledge on this site ...

.... so I most certainly understand if you don't have the "bandwidth" for a personal conversation with one more stranger who would like to speak with you.

But I would be SO grateful for a few moments of your time, and will definitely "pass it forward" in terms of helping the next person, which I already do whenever possible.

I'm very interested in what you've posted regarding the anti-anglogenic (spelling?) experiments, and will seek out more information on what I can do RIGHT NOW to pursue that avenue. Since I'm at high risk for many cancers with my BRCA2 genetics (am 62 now and have - so far - had only that one basil cell cancer episode 24 years ago) and am a mostly vegan (small amount of dairy) vegetarian and have been since I was 20 ... I eat very very little processed food, and am otherwise healthy. Kaiser has recommended that I removed my breasts to prevent the breast cancer they say I should expect (have already removed my ovaries) ... so it's understandable that I feel like I'm walking on egg-shells regarding cancer.

OK ... that's it on who I am ....

I live in Northern California (Pacific Standard Time Zone) and even a few moments on the phone with you would help me have hope that I can find the BEST topical solution to avoid going to Kaiser to submit to their "standard practice" ... which would be a biopsy on my lip (NO NO NO) ... this is quite early stage and may well not yet have progressed to an actual cancer ... but it definitely needs to be treated.

many many thanks for your consideration.

Best Regards and SO MANY THANKS for the FABULOUS information you've provided to so many.


Edited by - anivoc on 11/16/2012 19:43:11
Go to Top of Page


6 Posts

Posted - 11/17/2012 :  23:34:49  Show Profile  Reply with Quote
Lani, I am also in the same time zone as you. I have seen the video via Dr. Mercola's website about the hemp oil (pot) being used for both internal and external cancers. The video has information about the person making the oil, the process and also the videos of people talking about their cancers being cured. I too have had surgery on my face (forehead) mine was Mohs. And even though I went through 4 levels of cutting and spent 8 hours letting them hack away on me the BCC was back in less than a year. Now I am going to pursue natural oils and plan to start with Thyme oil cut with Organic Olive Oil. Hope to finish my oil treatment with Frankincense. Will post when I can figure out how to make pics small enough :-)
Go to Top of Page
  Previous Topic Topic Next Topic  
 New Topic  Reply to Topic
 Printer Friendly
Jump To:
Skin Cancer Forum © 2013 Go To Top Of Page
Snitz Forums 2000

Disclaimer: The three most common types of skin cancer are basal cell carcinoma, squamous cell carcinoma, and melanoma. While melanoma is the most dangerous type, keep in mind that any cancer and potentially some cancer treatments can cause injury or death. The various views expressed in these public forums should not be considered as medical advice. See your qualified health-care professional for medical attention, advice, diagnosis, and treatments.